(@

gmg APPLIED
S NUMERICAL
MATHEMATICS

<<

%
=
[] I"(

ELSEVIER Applied Numerical Mathematics 30 (1999) 225-239

An iterative method for algebraic solution to interval equations

Svetoslav Markov

Bulgarian Academy of Sciences, Institute of Mathematics and Computer Sciences, Acad. G. Bonchev str. bl. 8,
1113 Sofia, Bulgaria

Abstract

The algebraic solution to systems of linear equations involving an interval square matrix and an interval right-
hand side vector in terms of interval arithmetic is discussed. The basic concepts of interval arithmetic are given in
a form suitable for our study. An iterative Jacobi type method is formulated and its convergence has been proved,
under certain conditions on the interval matrix. In the special case when only the right-hand side is interval-
valued we reduce the problem to two ordinary linear systems. An iterative numerical algorithm is proposed and
numerically demonstrated. 1999 Elsevier Science B.V. and IMACS. All rights reserved.
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1. Introduction

We consider linear algebraic systems involving intervals in#he n)-matrix A and in the right-hand
siden-vectorb. We shall be concerned with thiaterval) algebraic solutiorwhich is an intervak-vector
x satisfying the system whenever the arithmetic operations are performed in interval arithmetic. We shall
write the problem in the form

Axx=D>b, 1)

to emphasize that the symbal™meansinterval multiplicationof the interval matrixA by the solution
vectorx; the latter being generally an interval vector.

Using a symbolic notation based on binary variables taking values from the set, we formulate
new distributivity relations and simple rules for the transformation of algebraic expressions and
equations. This leads to a powerful complete interval algebraic structure, referreditectsd interval
arithmetic We use the term “directed” to distinguish it from similar arithmetic theories like the “modular”
arithmetic developed by Gardenes and his collaborators [2]. The directed interval arithmetic unifies both
the extended interval arithmetic as developed by Kaucher [4] and the extended arithmetic for normal
intervals usingnner (nonstandaryl operations [6]. In particular, it has been proved that the system of
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normal intervals with inner operations is: (i) a “projection” of the directed interval arithmetic system
on the system of normal intervals, and (ii) isomorphically embedded in the directed interval algebraic
system [7,8].

Some characteristic features of directed interval arithmetic:

() provides a simple general framework which enables us to pass from directed (proper and
improper) intervals to proper intervals (with inner operations), and vice versa,

(i) involves a set of new relations and computational rules necessary for the straightforward symbolic
transformation of algebraic expressions and equations;

(iif) makes use of binary variables, respectively specific “plus—minus” notations.

The algebraic solution to (1) seems to be related to the solutions of other practically significant linear
algebraic problems involving interval coefficients, such as the united, the controlled and the tolerable
solutions (cf. [15-18]). For instance, it has been shown, that the algebraic solution presents an inner
estimate of the united solution [5]. This shows the importance of a self-contained study of the algebraic
solution to (1).

In this work we propose an interval Jacobi type iteration procedure for finding the algebraic solution
of the interval system (1) and prove its convergence using new powerful tools from directed interval
arithmetic. We point out to a relation between our method and a method proposed in [19] and studied
in [5]. In the special case when only the right-hand side of (1) is interval-valued we give conditions for
the existence of solution and formulate the solution in explicit form. A numerical algorithm based on the
proposed iterative method is formulated and numerical examples are given. Parts of this work have beer
presented in [9,11]. Some of the basic concepts of directed interval arithmetic, necessary to formulate
and prove our method cannot be found in the literature. For this reason we give a brief introduction to
this arithmetic in a form suitable for our purposes.

2. Directed interval arithmetic

GivenA—, AT ceRthesetA={x | A~ <x < AT}=[A", A"]is called a (normal, proper) interval
(on R). The set of all normal intervals ofR is denoted byl (R). The operations addition and
multiplication for A, B € I (R) are defined by

A+B={+nl&§€A, ne B}, AxB={n|§ €A, ne B}, 2
and inclusionA C B is understood in the usual set-theoretic sense. Denote
Z={AcI®)| A~ <0< A"}, Z*={AeclIR)|A~ <0< A"}

The systemqI(R), +), ({(R) \ Z, x) are Abelian cancellative semigroups. Therefore they can be
isomorphically extended up to (minimal) group systems by means of the familiar extension method
used for the introduction of negative and rational numbers [4]. The corresponding group systems will be
further denoted byD, +), (D*, x), whereD is the set of pairs of the formn= (A’, A”), A’, A” € I(R),
factorized by the equivalence relation, B) = (C, D) ifand onlyif A+ D =B+ C andD*= D\ 7,
where7 is the set of elements “involving” O to be defined below. The elemeni3 afe calleddirected
intervals By means of the extension method one obtains the isomorphic extensions of the operations
“+”", “x” and the inclusion relation ¢” in D. Therefore we may assume that the algebraic system
(D, +, %, ©) is well defined. All other operations i (like subtraction, division etc.) are derived as
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subsidiary operations from the basic ones (2) by means of familiar algebraic constructions (isomorphic
embeddings, inverses, compaositions, projections, etc.) [4,8]. As a consequence of this abstract algebrai
approach one can derive: (i) algebraic properties and relatiods, iand (ii) corresponding formulae
involving a numerical component-wise presentation of intervals. In the present work we shall make use
mainly of algebraic properties of the systgml, +, %, C) and not of the component-wise presentation
of intervals (an exception of this rule are some results in Section 5 using the center-radius presentation).
For convenience we include some formulae for the two familiar interval presentations—the endpoint and
center-radius form in Appendix A.

Every directed interval can be presented as a pair of normal intervals, which has either the form
(A, 0) or the form(0, B) [7,8]. Directed intervals of the forrA, 0), A € I(R), are called proper (and if
A € R—degenerate), the ones of the fof B) with B € I (R) \ R are improper. The set of all proper
intervals is equivalent té(R) and is denoted again ByR), the set of degenerate intervals is equivalent
to R and is denoted bR, and the set of improper intervals is denoted/IoRR). We say that two directed
intervals are of same type if they both belong either (&) or to 7 (R). We haveD = I (R) U I (R),
that is D consists: (i) of the set of all normal intervals, sucH@sl], [—1, 1], [1, 1] =1, etc., and (ii) of
improper intervals, which can be presented eitheiOad) =[A; —] (see, e.g., [7]), or as intervals with
reverse “endpoints"—note that the endpointsA& 7 (R) are endpointsof (0, A) (see Appendix A).
Denote

Z={0,A)|AcI®), A-<0<A"}, Z'={0,A)|AcI(R),A" <0<A*};

denote als& = ZUZ, T*=Z*UZ", D*= D\ 7. Note thatD* is the set of pair§A, 0) or (0, A),

A € I(R), such that ¢ A. The setD* is often mentioned below, since we are able to divide by its
elements. Occasionally we shall also make use of the largeP $ef * of elements, possibly having
one of their “endpoints” equal to zero (that is, pairs 0) or (0, A), such thatA may have zero as an
endpoint).

Algebraic properties and computational rulesThe systemgD, +) and (D*, %) are groups according
to the definition of 4", respectively %”, by the above mentioned extension method; hence these systems
possess inverse additive and multiplicative operators. Denotegaythe opposite (additive inverse) of
a € D and by 1/ a the inverse oti € D* with respect to %”. Hence, fora, b € D the unique solution to
the equatior: + x =b isx =b + (—pa) = b —p a. Similarly, fora € D*, b € D the unique solution to
the equatiom x y=bisy=bx(1/pa)=b/pa. Of coursea —pa=0anda /pa = 1.

Interval multiplication by scalar is special case of interval multiplication when one of the multipliers
in a x b is degenerate (that is, real number). Multiplication b¥ is callednegationand is denoted
—a = (—1)xa; we writea — b = a+ (—b). Interval multiplication by scalar obeys the rules: (8 xu) =
(@B)xuandax(u+v)=axu+axvfora,BeR,u,veD. Therule(w + B) *xu=axu+pB*xu
does not generally hold (see below).

Dualization (dual interva), denoted:_, is defined as composition of negation and opposite_ by
—(—p(a)). We have—p(—a) = —(—pa) = a_. Reciprocal elemeris defined inD* as Ya=1/pa_,
we have ¥p (1/a) =1/(1/pa) = a_, for a € D*. The inverse operators with respect to multiplication
can be written as Jpa = 1/a_. The inverse elements pa, 1/pa generate thénverse operations
a—-pb=a+(—pb)y=a+(-b_)=a—-b_, a/pb=ax1/pb)=ax(1/b_)=a/b_.Fora,be D,
¢ € D* the (unique) solutions of the equationst x = b, ¢ x y = b, a + ¢ x z = b are respectively
x=b+(—a)=b—a_,y=bx1/c_)=b/c_,z=((b—a_)/c_.
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Denotinga,; = a, we havea, € {a,a_} for A € A = {4+, —}. A “product” of two binary variables
uv, u,v € A, is defined by++ = —— =+, and+— = —4 = —. Using this product we may write
(a;)s = ays, in particular,(ay); = a. Note that the equations= b anda; = b, are equivalent; and such
area;, = b anda = b,. The equationg = b anda — b_ = 0 are equivalent, alse = » anda/b_ =1 for
b € D*. We also haVQa +b), =ay + by, (axb), =a; *b;,a, —a_, =0, etc.

Define the “sign"s : D\ 7* — A of a directed intervak = (A, 0), respectivelya = (0, A), such that
0¢ A, by

{-i-, if A=>0,A" >0,
o(a)= .
—, ifA=<0,AT 0.

Theconditionally distributive(g-distributive) law states [1,7,13]: Fat, b, c,a + b € D \ 7* we have
(@+b)*Corb) =a* Co) + b *Copy, (3

which can be also writte(u + b) x ¢ = a * C5(a)o(a+b) + U * Co(b)o (a+b)-
In particular, for alle, 8 € R, ¢ € D, we have

(Ol + ﬂ) * Co(a+p) = * Co (o) + ,3 *Co(B)- (4)

Relation (4) shows that the algebraic systéi +, R, %) is not a linear space; this space, called g-
linear, has been studied in [8,10]. From (4) it can be noticed that the g-linear space involves a linear
multiplication« - ¢ = & * ¢, (o), Satisfying(e + ) -c=a -c+ g - c.

The following distributivity relation may be also useful.dfe 7*, thend can be splitted into two
intervalsa, b having the same type asand satisfying the relations b € 7, d = a + b (in fact, botha
andb have each one endpoint equal to zero). Theng foiD* we have

dxc=(a+b)xc=axc+bxc. (5)

The intervala € D is calledsymmetridf ¢ = —a. Denote the set of all symmetric intervals By. If

a € Ds, thena_ € Ds as well. It is easy to see thatdfis symmetric, thery xa = |y|*a for y € R. The
subsetR and Ds form a basis ofD in the following sense. If we fix two intervalse R, s € Ds, ¢ # 0,

s # 0, then every: € D can be uniquely presented by means of a pair of real nunibees’), a’, a” € R,
suchthatt =a’ x e+ a" x 55y = a’ x e+ |a”| * 5,7 We shall further fix =1, s = j =[-1, 1] (note
that j satisfiesj « j = j). Thus we haver = a’ + |a”| * j, (), Which will be symbolically denoted
by a = (a’,a”) and calledcenter-radiusform. It is easy to see that in center-radius form addition is
@,ay+ @, b= +b,a" +b"), and interval multiplication by scalar isx (b, b") = (ab’, |a|b").
Dualization is(a’, a”)_ = (a’, —a'"), more generally we can writel’, a”); = (a’, Aa”). More relations
for the center-radius form are given in Appendix A.

Inclusion, norm, metric. The systemgD, +, C) and (D*, %, C) are isotone groups [4]. Norm i
is introduced in the usual waylx| is a norm inD, if: (i) |lx|| > 0 and||x| = 0 if and only if x = 0;
(i) lIlx + vl < x|l + Iyvll; and (i) |k *x|| < |k[[|x|| for k e R. Forx € D, ||x|| =inf,{t % j_ Cx Ctxj}
is a norm [4]. Some useful properties of the nornDirare: ||x * y|| < ||x|||¥]l, llx=]| = ||x]|. Other norms
are given in Appendix A. The norm i induces a metrie(x, y) by means of(x,y) = |lx —p y|| =
lx —y_| forx,y e D.
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3. Interval matrix algebra

Denote by D" the set of alln-dimensional vectorsx = (xq,...,x,) with componentsx; € D,
i =1,...,n,and byD"** the set of all/ x k)-dimensional matriced = {a,-,-}?jjjj" = (a;;) With a;; € D.
Operations between vectors and matrices of directed intervals, furthericédladgl vectorsrespectively
interval matricesare defined similarly to matrix operations involving numbers. Addition and subtraction
are defined component-wise for interval vectors (matrices) of identical size. An interval vector with all
components degenerate is called degenerate.

Dot (inner) product of two interval vectoss= (x1, ..., x,) € D", y = (y1, ..., yu) € D", is defined by
(x,y) =" x; *y; in particular, ifx =& € R" we have(§, y) = >7_, & * y;. If A= (a;;) € D™ and
B = (b;j) € D" then the product of the interval matricdsand B is the matrixC = A x« B = (cij) €
D™ with ¢;; = Zizlaik * by;. This defines the expressioh* x in (1) as a product of two interval
matrices: namelyA, x are considered as interval matrices of ordet n, n x 1, respectively, and the
resultA xx is an interval(n x 1)-matrix. LetA € R"*" be a real-valued (point) matrix and ketv € D".
Using that the matrix is real-valued we obtain the ruléx (u + v) = A xu + A % v.

The norm||x|| in D is extended for vectors and matrices in the usual way. For instancé,#ofa;; ) €
D™ we may define a matrix norm by

1Al = max{ > ||a,-k||}.
"o lk=t
Other norms are given in Appendix A. For the product of two interval matrices we |haweB| <
IA]IB]l. A metric in D" is defined by|lx —p y|| = |lx — y_|| for x, y € D". It has been proved in
[4] that fora, b, c € D", we have|lc xa —p ¢ * b|| < ||c|||lla —p b||. This relation can be generalized as
follows:

Proposition 1. Leta, b € D", C € D"*". Then we have
ICxa—pCx*b|<|Cllla—pbl.

Proposition 2. Let U: D, — D,, D, C D", be a contraction mapping in the sense that there exists
geR,0<qg <1, suchthallUx) —p U(y)| <gllx —p yl,forall x, y € D;. ThenU has a fixed-point
x* € D1, which is the limit of the sequena¢ Y =U(x"),1=0,1, ..., foranyx© e D;.

The proof follows the classical proof using properties ofy” such asa —p a =0 and(a —p b) +
(b —p ¢) =a —p c. Proposition 2 is a generalization of a fixed-point theorem from [6].

We shall consider vectors and matrices consisting of signs from: {4+, —}. The set of all
n-dimensional vectors of signs = (Aq,...,4,) with A; € A is denoted byA” and the set of all
(n x n)-dimensional matrices of signs is denoted hy*". Matrices (vectors) of signs of same size
are “multiplied” component-wise using the rulegst+ = —— = +, +— = —+ = —. For instance, for
rA=(+,—+, ), u=(—,+,—,+), we haveru = (—, —, —, —).

Similarly, the “product” of a matrix (vector) of signs by an interval matrix (vector) of the same size is
defined, e.g., fok = (+, —, 4+, —) € A% x = (x1, X2, X3, x4) € D* we haverx = (x1, —x2, X3, —xa). We
extend further this rule for dualization as follows. Let (Aq,...,A,) € A" andx = (xq, ..., x,) € D".

The vector((x1);,, - - ., (x,),) Will be symbolically denoted by, . For instance, fok = (+, —, +, —) €
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A% x = (x1, x2, x3, x4) € D*, we havex, = (x1, (x2)_, x3, (x4)_). Under this convention the rules for
dualization are generalized for matrices and vectors, i.e., we have;that is equivalent tax = v;,
(%), = Xx,,, etc. According to the above we shall further assume that “products” of the Fosnand
FA, T',Ac A"™" A e D", are well defined.

If a=(a,...,a,) € (D*)", denoteo (a) = (o (a1),...,0(a,)) and, if A € (D*)"*", denotec (A) =
(o (ajr)). Forx = (x1,...,x,) € D" we havex, ) = ((x1)s(@y), - - -» *n)s@,))- Using such notation we
can write(b, X, q)) = i1 bi * (X;) 54, @Nd, in particular{a, X, q)) = >.71_1 @i * (X1 (a)-

We may further extend the above notation for a product of the farax gy, whereA, B € (D*)"*",

x € D". To this end consider the matrik as a system of vectors, thatds= (a;;) = {a;}/_; € (D*)"*",
wherea; = (a;1, . .., a;,) € (D*)". We then have

n
n
n
AxXom) = {{(@i, Xob)) };_y = {Zaik * (xk)a(b,-k)} .
i=1

k=1
Using these notations we generalize (3) as follows:
Proposition 3. Let A, B € (D*)"*" are such thatd + B € (D*)"*" and letc € (D*)". Then we have
(A+B)>I<C(,(A+B):A*C(,(A)—l-B*C(,(B). (6)

Relation (6) can be also written in the form
(A+ B) *c=A*C5a)0(4+B) T B * Co(B)o(4+B)- (7)

Proposition 4. LetC € (D*)" and leta, b € (D*)" are such thatt + b € (D*)". Then we have
Cowarpy ¥ (@+b)=Coayxa+ Copy*b. 8)

Relation (8) can be written in the form
C x(a+b)=Cowo@+h *a+ Comyo@rp *b. )

Note that relations (6) and (7) are valid in particular for atyB € R and similarly, (8) and, (9)
hold true for anyC € D"*" anda, b € R".

4. An iterative interval method

Given an interval matrixd € D"*" denoteT = T (A) = (#;;) with t;; = a;;, 1;; =0, i # j. Assuming
ai;€D*i=1,... n,denotel ' =T YA) =@}, 1} =1/(a;)-, 1;; =0,i # j. Clearly, T ™"+ T =1.
Consider the following interval-valued analogue of the Jacobi iteration procedure:

x: =T % (b—-p(A—pT)*x). (10)

In (10),A —p T = A — T _ is the matrixA with diagonal elements replaced by zero. Using distributivity
relations (3) and (5)—(9), it is easy to see that both systems of equations (1) and (10) are algebraically
equivalent.

Proposition 5. Letthe matrixA € D"*" satisfya;; € D*,i =1, ..., n,together with| T~ |[A—p T || <
g < 1. Then(1) has a unique solutiow,; € D" and method (10) converges g for anyb € D" and any
initial approximationx© e D".
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Proof. Forx € D" denoteB(x) =T Y% (b —p (A —p T) xx). Forx, y € D" we have

|Bx)—p B =T % ®-pA—pT)*x)—pT 5% (b—p(A—pT)*y)|
< T7H|[[(B—p (A=p T)%x) —p (b—p (A—p T)*y)||
=[ITH[[(A=pT)xy —p (A —p T) *x||
<IT YA =p Tllly —pxll <qlly —p xI,

using Proposition 1. The inequalityB(x) —p B(y)|l < glly —p x|| shows thatB is a contraction
mapping. This combined with Proposition 2 and the fact that (1) and (10) are algebraically equivalent
proves the theorem. O

In [19] the following iteration method for the solution to (1) withe D" has been proposed:

n

X = (bl —D Z aij *xj>/(a,-i)_, i:].,...,l’l. (11)
J=Lj#i

Obviously, (11) is a component-wise form of the matrix expression (10). Kupriyanova proves

convergence of the iterative process (11) to the solution of problem (1) under special (implicit) restrictions

on the input datad, b and on the initial approximation [5]. Proposition 5 requires explicit restrictions on

the matrix and no restrictions on the initial approximations.

Remark. If in Proposition 5 both inequalitie§T (A)™%| < ¢ <1, and||A —p D(A)| < g <1 are
assumed, then we obtajiB (x) —p B(y)|| < ¢? ||y —p x|, showing better convergence.

Our iteration method can be also applied (with some modifications) to the more general problem
Axxr+ Bxx,=c, (12)

where A, B € D"", ' A € A" and ¢ € D". We note that (12) is not the most general form of
systems of equations of the type (1) (cf. [13]). However, in the case of real-valued (point) matrix
coefficients problem (12) presents the general situation. The important special case of point matrices will
be considered in the next section. We shall end this section by considering (12) in the one-dimensional
case. Then we obtain a single equation of the form

axy+bxy,=v, reA={+ -}, (13)

with respect toy. From (3) we see that in the casda)o (b) = A the expression: « y + b * y, is
algebraically equivalent to * (a + b)s ()0 @+ and therefore the solutiopn of a xy + by, = v is

y = /(@ + b))owow@tr)- A presentation of the expression« y + b * y, in the formy x ¢ is not
possible in the case(a)o (b) = —\. The next proposition shows that (13) has a unique solution in the
general case when no constraiz)o (b) = A is assumed.

Proposition 6. Given area,b,v e D\ 7%, » € A = {+, —}. Assume that’ = a, ) * drs) — b—o k) *
b_ss() € D*. EQ.(13) has the unique solution

v v
y= <amg(b) * 7T b_s0) * <—) > , s =555 S=00(y). (14)
-1/ o(s’)

S
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To determine the siga(y) in (14) consider the following two cases:
() o(a) =0 (b). In this case it can be easily seen fr¢tr8) that o (y) = o (v)o (a), henceo (a) =
o (b) = o (v)o (y) = 4. The solution(14) obtains the form

y= (ak*g—b_* <E> ) , s:(a*a,\—b_*b_k)_g(s).
§ S/ -/ o(s)

(i) o(a) =—o(b). Then from(14)we see that (v) = o (v)o (s)o (a) and the expression forobtains
the form

v

v
y:a_,\*(—> —b_*(—> , S=a_xa, —b_xb,.
S/ o(s) S/ —ro(s)

5. Special case: Point matrix, interval right-hand side

In the special case of point matrix and interval right-hand side we are able to find simple conditions
for the existence and uniqueness of the solution and to reduce the problem to the familiar numerical case
We shall make use of the following definition (cf. [17]):

Definition. LetA = {a;} € R"*" be areal-valued (point) matrix. We say that the ma#rils completely
nonsingular if both matricesA and|A| = {|a; «|} are nonsingular.

In the next proposition we make use of the center-radius presentation of an interval vector writing
the components ab = {b;} € D" in the formb; = (b, b!) € D. Denote the vector of the centers by

1’71

b’ = {b}!_, € R" and the vector of the radii by’ = {b/}!_, e R", so thath = (b', b") € D".

Proposition 7. Let A = («; x) € R"*" be completely nonsingular ard= (b, b") = {(b;, b})}\_, € D"

be a given interval vector. Thef) has a unique solutiow = (x’, x”) = {(x/, x/')}, such thate’ = {x/} €
R is the solution of the linear systedw’ = &', andx” = {x/'} € R" is the solution of the linear system
|Alx" =b".

Proof. System (1) in component-wise form is
o11% X1+ 02k X2 + -+ + g, x X, = by,
(15)
Op1 % X1+ 02k X2+ -+ + Oy kX :bna

wherea;; e R, b; € D, i =1, ...,n. Substituting in (15) the center-radius presentations for the involved
intervalsx; = (x/, x/"), b; = (b}, b!) € D, we reduce system (1) to two (real-valued) linear systems for the

17771 1’71

coordinates of the unknowns. The centerg R” satisfy the linear system
a11- Xy 120 X5+ -+ F oy, - X, = b,

(16)

’ / ’ ’
arzl'x1+a112'x2+"'+ann X, :bna
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and the radiix;" € R satisfy
loaa] - X7 + loao] - x5 + -+ o | - x, = b1,

(7)
lotnt | 'Xi/ + |2 'xg + o ol 'xy/;/ :b;;/

Using thatA is completely nonsingular, observe that (16) and (17) have unigue solutions, hence the
proposition follows. O

Note that using center-radius form we are able to prove Proposition 7 by splitting the original problem
into two numerical problems of theamesize @ x n) for the numerical components of the intervals (using
center-radius form). The use of endpoint presentation of intervals generally leads to numerical problems
of double size (2 x 2n) (cf., e.g., [17]).

Our technique can be applied for the general problem (A2}:xr + B * x4 = ¢, involving real
matricesA, B € R"*", and arbitrary sign matriceB,A € A"*",

The following proposition states that problem (12) splits into two numerical linear probldms
B)x'=c,('|A|+ A|B)x" =c".

Proposition 8. LetI' A € A", ¢ € D", and letA,B € R"™*" are such thatd + B and I' |A| + A|B|
are nonsingular. TheKil2) has a unique solutiom = (x’, x”), wherex’ is solution of the linear system
(A+ B)x' =/, andx” is solution of the linear systeid"|A| + A|B|)x” = ¢”.

Corollary. Let A € {+,—}, c € D", and let A, B € R"" are such that both matriced + B and
|A| + A|B]| are nonsingular. Equatiori x x + B * x, = ¢ has a unique solutiox = (x’, x”), where
x’ is the solution of the linear syste + B)x’ = ¢/, and x” is the solution of the linear system
(|A| + A|B)x" =¢".

To demonstrate the technique for equivalent algebraic transformation of directed interval expressions
we prove below the special case when the dimension of the system is one, that is the problem (12) consist
of one equation only. This case can be considered as a special case of Proposition 6 with degenerat
coefficients.

Proposition 9. Letp,q € R, A € {+, —},d € D, s = p*> — ¢® # 0. Then equation

pxx+qxx,=d (18)
has a unique solution
x=5stx(pxd—qxd ) (29)

Proof. Denotes = o (s) and substitute (19) into (18):
pxx+qrx,=(ps ) x(pxd—q*d )+ (g5 ) % (prd —g*d ;)i
= (pPs V) xdy + (—pgs ™) xd_so + (qps ™) kdyy + (—g°s ™) xd_,
=(p%s Y xd, + (—g%s ) xd_g =5 % (p?xd + (—q°) xd_),
=57 % ((p° = 4°) % dy), = (57 (p* = ¢°)) % d.
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where for the equivalent transformation in the last line we use the distributive relation (4). The last
guantity is obviously equal td, which proves that (19) is a solution to (18). Noticing that all above
algebraic tranformations are equivalent, we see that (19) is the unique solution to (18).

The next proposition shows that in certain special cases we can write the solution to problem (1) with
point matrix A in the form of an interval Cramer-type formula.

Proposition 10. Let A = (a; ) € R™" be a real matrix and let the numbesig, A; ., where A, ; is the
subdeterminant of; ,, have constant signs for allk =1, 2,..., n. Then for the solution ta\ xx = b
the following Cramer-type formula holds:

air ... bl P A1)

1 . (1
(ot =7 D (=D A b, E 2| : P
i=1 ay, ... b, ... an

where; ; = (=)™ = {+, i + k even;—, i + k odd}.

The proof is easily obtained using the properties of directed intervals. A class of matrices satisfying
the conditions of Proposition 10 is the class of Vandermonde matrices, appearing in interpolation theory.

6. Numerical algorithm and experiments

The following simple numerical procedure for the solution of (step 1 is based on Proposition 6).
1. Check the conditiofi T ~%||||A —p T'|| < 1.
2. Using a random initial approximatior® iterate according to

x &Y -1y (b—p(A—p T)*x(k)), k=0,1,.... (20)

Using the inclusion properties of the interval arithmetic operations (see, e.g., [4]) it is possible to
construct a modification of the above interval algorithm, using suitable computer-arithmetic operations
and delivering the result with automatic verification. Such verified algorithm was implemented and
tested using an experimental package for directed interval arithmetic [14]. A discussion on the software
implementation is given in [11]. For the numerical applications we need component-wise and/or center-
radius presentations of the interval operations. A brief summary of these presentations is given in
Appendix A.

The following examples are solved by means of the package announced in [11]. All results are obtained
in several iterations using random initial approximations.

Example 1. Consider the system [3]
[0.7,1.3] [-0.3,0.3] [-0.3,0.3] [—14,7]
[-0.3,0.3] [0.7,1.3] [-0.3,03] |*xx=1{ [9,12] |.
[-0.3,0.3] [-0.3,0.3] [0.7,1.3] [3, 3]
The algebraic solution obtained by the iteration method (10) using random initial approximation is
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[16.7679 7.125

([—9.125 —13.0534 )
X =
[11.25, —2.67857

Example 2. Consider the system [12]

[3.7,4.3] [—1.5, —0.5] [0, O] [—14, 14]
([—1.5, —0.5] [3.7,4.3] [—1.5, —0.5]) *X = ( [—9, 9] ) .
[0, O] [—1.5, -0.5] [3.7,4.3] [—3,3]

The solution obtained by the iteration method (10) using random initial approximation is

[—2.92668 2.92669
x = [ [-0.9435310.94353] | .
[—0.368536 0.368534

Changing in the above problem only the vediphere are some results:

[—14,0] [—3.46158 —0.936849
b=1| [-90] ) ; x= [—2.3109 —1.7699 )
[—3,0] [—0.903442 —0.936889
[0, 14] [0.936849 3.46158
b= [0,9] ) ; x= [1.7696 2.3109 )
[0, 3] [0.9368890.903443
(2, 14] [0.392969 2.86724
b=|[-9, —3]) ; x=| [-111391 -1.09203 ) .
[—3,1] [—0.824654 —0.181313
(2, 14] [1.46332 3.54147
b=1 [309] ) ; x= [2.45663 2.2762 )
[—3,1] [0.1119720.518213

Example 3. This is an example from [3]:

[2,3] [0,1]\ [/ 1[0.120 _ ([0.17.1429
<[1,2] [2,3])* _<[60,240])’ o ([30,68.5714])'

7. Conclusion

We formulate explicit conditions on the matrix in (1) and prove that under these conditions the interval
Jacobi-type method (11) converges to the solution to (1) witkaritrary initial approximation and
arbitrary right-hand side. The presented technigques may be used to formulate and prove convergence o
other iteration methods, which are interval analogues of familiar iteration methods for the numeric case.
From our results we conclude that algebraic transformations based on directed interval arithmetic can
be successfully used for the formulation of iterative procedures for the solution of the interval algebraic
problem (1), respectively for the analysis of the solution (e.g., with respect to its convergence). Thereby
directed interval arithmetic can be used in a way much similar to using real arithmetic.

Directed interval arithmetic is the natural arithmetic for the solution of algebraic equations with
interval coefficients, since it is obtained from the arithmetic for normal intervals via algebraic completion.
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Solving interval algebraic equations using only proper intervals can be compared to solving real

linear algebraic equations when restricting ourselves only to positive integer numbers (Diophantine

equations). Indeed, in both cases we stay within semigroup systems and make no use of inverse
additive/multiplicative operations.
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Appendix A

Below we give some formulae and expressions for the numerical component-wise presentations of
intervals, using the endpoint and center-radius presentation proposed in [4].

A.1. End-point form

The set of directed interval® is equivalent to the set of all ordered pairs of real numBgrsg] |
o, B € R} [4]. The first component (endpoint) af € D is further denoted by:—, and the second by
a*, so thata = [a~,a™]. Thusa* € R with A € A = {+, —} is the first or the second component of
a € D depending on the value af The directed intervat = [a—, a™] is proper (norma)) if a~ <a™,
degeneratéf a— = a™, andimproperif a~ > a™. The set of all proper intervals is equivalentt@R),
the set of degenerate intervals is equivalenRtoand the set of improper intervals ISR). We have
D=IR)UIR).

To every directed interval = [a—,a™] € D corresponds a binary variabigpe or direction, defined
by

T(a)—{+’ if a <a™,
=, ifa >at.

We have

Z={aeclIR)|a*<0<a }, Z'={ael®) |a* <0<a},

T=7ZUZ,T*=27Z*UZ ,D*=D\T.
Thesignof a directed intervab : D \ 7* — A can be expressed by
+, ifa",at >0,
“(a):{—, if = <0, a* <0,
Addition “+”in D can be expressed endpoint-wise as
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a+b=[a"+b",a"+b*], abeD.
An endpoint-wise presentation of multiplication™in D is given by
[a—a(b)b—a(a)’ ao‘(b)bc(a)] . a, beD \ 7*1

axb=1 [a®" Db a¥*®p], §=o(a), acD\T* beT", (A1)
[a=pP* @, gopT @] §=o(), acT*, be D\T*,
[min{a~b*,a*b™}, max{a~b~,a*b*}], a,beZ*,

axb={ [max{a=b~,a*b*}, min{ab*,a*b"}], a,beZ, (A.2)
0, (aeZ*, beZ )V (aeZ", beZ").

If one of the multipliers in (A.1) is degenerate, than for aaya] = a € R, b € D we obtain
a*b=1[ab=°%, ab®@]. This implies that the case ¢ D\ 7*, b € T* in (A.1) can be written as
axb=a’@7® yp,

Negationis expressed by-b = (—1) x b = [—-b", —b~]. The composite operatiom + (—1) x b =
a+(=b)=a—b=[a" —b",a™ —b~]is subtraction

The inverse is presented component-wise-asa = [—a~, —a*], for a € D, and 1/pa =
[1/a—,1/a*], for a € D*. We have component-wise for the dualizati¢ar,a*]_ =[a*,a"], and
for the reciprocal: 1[a~,a*1=[1/a",1/a"],a € D*;alsola",a* ], =[a~", a’].

InclusioninD is A c Bifandonly ifa~ > b~ anda™ < b.

If x € D we have

x|l =inf {r* j_ Cx Crxj}=max{|x"|, |xT|}.
Other norms aréix |, = |x~| + |x*] and||x||s = (]x~|? + |x|? 2. The induced metric iD is
r(x, y) =lx —p yl =max{|x™ =y~ |, [x* = yT[},
lx =pylla=|x" =y~ |+[x"=y7],
I —p ylls= (x~ =yt [xt =yt )2
If (cq,...,c,) € D" we have
[(coerevenll = max{le Yy = max{le; | [e ¥

For the other two norms we have

n

n
[cr el =D lleilla= > (lei |+ |ef
i=1

i=1

)i

1/2 ; 1/2

(et --ven)|ls= (gucin%) = (Z(!c:l2+ |c,-+!2>>

i=1
A.2. Center-radius form

Denote the center ai by ¢’ and the radius by:”. Both a’,a” are elements oR; the radius of
an improper intervals is negative and we havwe) = o(a”). An interval in center-radius form is
denoted by(a’,a”). The transition formulae between both forms (endpoint and center-radius) are:
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() =3 +a"),a" =3 —a), and (i)a* =a’ +a", a~ =d —a". In center-radius form
addition has the form
(a,a")+ b, b")=(d"+b',a"+b"), a,beD.
Interval multiplication is given by
(a'b' +o(b)o(@)a'd", |b'la" + |a'|b"), fa,be D\T,
(d,a") % (b',b") =4 (@b +o(b)t(a)a'b’, |b'|a" + |a"|b"), if condition C, (A.3)
0, ifa,beT, t(a)=—1(b),

Condition C in (A.3) is: either (Cly € 7, be D\ 7, 0r (C2)a,b e T, t(a) =t(b), x(a) < x(b),
wherey is defined fora # 0 by

x(@=a"/a®=(a' +8a")/(a —8a"), §=r(a)o(a).
The interval multiplication by scalar is a special case of (A.3):
ax (b, b")=(ab,|a|b”), a€R, beD. (A.4)

Below we summarize the presentations of the operators opposite, negation, dualization, reciprocal anc
inverse, both in endpoint and center-radius form:

olat = [ —at], —plda) = (—d'—a"),
faat) = et —a], (@) = (=),
e ) (.a)_ = (' ~a"),
1/la",a*] =[1/a",1/a7], 1/(a’,a") = (a'/A(a),d" | Aa)),

_~

1/pla”,a*]=[1/a",1/a"], 1/(a’',a") = (a'/A(a), —a" | Aa)),

whereA(a) = (@)% — (@")?=a"a™.
Inclusion can be expressed in center-radius presentatiencby if and only if |b' — da'| < b" — d”.
Note that the latter condition splits to two simultaneous restrictidns a” =y >0 and|p’ —a'| < y

Norm, metric. The following functionals are norms iB:
ey’ =

In D" we may take respectively

el = lely) = ()2 + | )2,

ler e = max{jei |}

v el = leclllm Z il +ei']):
i=1

1/2 n
_ ( (/P + |c;’|2>)
i=1

1/2

It ... en||S = (Z(nciné”f)
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