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Abstract

The algebraic solution to systems of linear equations involving an interval square matrix and an interval right-
hand side vector in terms of interval arithmetic is discussed. The basic concepts of interval arithmetic are given in
a form suitable for our study. An iterative Jacobi type method is formulated and its convergence has been proved,
under certain conditions on the interval matrix. In the special case when only the right-hand side is interval-
valued we reduce the problem to two ordinary linear systems. An iterative numerical algorithm is proposed and
numerically demonstrated. 1999 Elsevier Science B.V. and IMACS. All rights reserved.
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1. Introduction

We consider linear algebraic systems involving intervals in the(n× n)-matrixA and in the right-hand
siden-vectorb. We shall be concerned with the (interval) algebraic solutionwhich is an intervaln-vector
x satisfying the system whenever the arithmetic operations are performed in interval arithmetic. We shall
write the problem in the form

A ∗ x = b, (1)

to emphasize that the symbol “∗” meansinterval multiplicationof the interval matrixA by the solution
vectorx; the latter being generally an interval vector.

Using a symbolic notation based on binary variables taking values from the set{+,−}, we formulate
new distributivity relations and simple rules for the transformation of algebraic expressions and
equations. This leads to a powerful complete interval algebraic structure, referred to asdirected interval
arithmetic. We use the term “directed” to distinguish it from similar arithmetic theories like the “modular”
arithmetic developed by Gardenes and his collaborators [2]. The directed interval arithmetic unifies both
the extended interval arithmetic as developed by Kaucher [4] and the extended arithmetic for normal
intervals usinginner (nonstandard) operations [6]. In particular, it has been proved that the system of
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normal intervals with inner operations is: (i) a “projection” of the directed interval arithmetic system
on the system of normal intervals, and (ii) isomorphically embedded in the directed interval algebraic
system [7,8].

Some characteristic features of directed interval arithmetic:
(i) provides a simple general framework which enables us to pass from directed (proper and

improper) intervals to proper intervals (with inner operations), and vice versa;
(ii) involves a set of new relations and computational rules necessary for the straightforward symbolic

transformation of algebraic expressions and equations;
(iii) makes use of binary variables, respectively specific “plus–minus” notations.
The algebraic solution to (1) seems to be related to the solutions of other practically significant linear

algebraic problems involving interval coefficients, such as the united, the controlled and the tolerable
solutions (cf. [15–18]). For instance, it has been shown, that the algebraic solution presents an inner
estimate of the united solution [5]. This shows the importance of a self-contained study of the algebraic
solution to (1).

In this work we propose an interval Jacobi type iteration procedure for finding the algebraic solution
of the interval system (1) and prove its convergence using new powerful tools from directed interval
arithmetic. We point out to a relation between our method and a method proposed in [19] and studied
in [5]. In the special case when only the right-hand side of (1) is interval-valued we give conditions for
the existence of solution and formulate the solution in explicit form. A numerical algorithm based on the
proposed iterative method is formulated and numerical examples are given. Parts of this work have been
presented in [9,11]. Some of the basic concepts of directed interval arithmetic, necessary to formulate
and prove our method cannot be found in the literature. For this reason we give a brief introduction to
this arithmetic in a form suitable for our purposes.

2. Directed interval arithmetic

GivenA−,A+ ∈ R the setA = {x | A− 6 x 6 A+} = [A−,A+] is called a (normal, proper) interval
(on R). The set of all normal intervals onR is denoted byI (R). The operations addition and
multiplication forA,B ∈ I (R) are defined by

A+B = {ξ + η | ξ ∈A, η ∈B}, A ∗B = {ξη | ξ ∈A, η ∈ B}, (2)

and inclusionA⊂ B is understood in the usual set-theoretic sense. Denote

Z = {A ∈ I (R) |A− 6 06A+
}
, Z∗ = {A ∈ I (R) |A− < 0<A+

}
.

The systems(I (R),+), (I (R) \ Z, ×) are Abelian cancellative semigroups. Therefore they can be
isomorphically extended up to (minimal) group systems by means of the familiar extension method
used for the introduction of negative and rational numbers [4]. The corresponding group systems will be
further denoted by(D,+), (D∗,×), whereD is the set of pairs of the forma = (A′,A′′),A′,A′′ ∈ I (R),
factorized by the equivalence relation(A,B)= (C,D) if and only ifA+D = B +C andD∗ =D \ T ,
whereT is the set of elements “involving” 0 to be defined below. The elements ofD are calleddirected
intervals. By means of the extension method one obtains the isomorphic extensions of the operations
“+”, “ ∗” and the inclusion relation “⊂” in D. Therefore we may assume that the algebraic system
(D,+,∗,⊂) is well defined. All other operations inD (like subtraction, division etc.) are derived as
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subsidiary operations from the basic ones (2) by means of familiar algebraic constructions (isomorphic
embeddings, inverses, compositions, projections, etc.) [4,8]. As a consequence of this abstract algebraic
approach one can derive: (i) algebraic properties and relations inD, and (ii) corresponding formulae
involving a numerical component-wise presentation of intervals. In the present work we shall make use
mainly of algebraic properties of the system(D,+,∗,⊂) and not of the component-wise presentation
of intervals (an exception of this rule are some results in Section 5 using the center-radius presentation).
For convenience we include some formulae for the two familiar interval presentations—the endpoint and
center-radius form in Appendix A.

Every directed interval can be presented as a pair of normal intervals, which has either the form
(A,0) or the form(0,B) [7,8]. Directed intervals of the form(A,0), A ∈ I (R), are called proper (and if
A ∈R—degenerate), the ones of the form(0,B) with B ∈ I (R) \R are improper. The set of all proper
intervals is equivalent toI (R) and is denoted again byI (R), the set of degenerate intervals is equivalent
toR and is denoted byR, and the set of improper intervals is denoted byI (R). We say that two directed
intervals are of same type if they both belong either toI (R) or to I (R). We haveD = I (R) ∪ I (R),
that isD consists: (i) of the set of all normal intervals, such as[0,1], [−1,1], [1,1] = 1, etc., and (ii) of
improper intervals, which can be presented either as(0,A)= [A;−] (see, e.g., [7]), or as intervals with
reverse “endpoints”—note that the endpoints ofA ∈ I (R) are endpointsof (0,A) (see Appendix A).
Denote

Z = {(0,A) |A ∈ I (R), A− 6 06A+
}
, Z

∗ = {(0,A) |A ∈ I (R),A− < 0<A+
};

denote alsoT = Z ∪ Z, T ∗ = Z∗ ∪ Z∗, D∗ =D \ T . Note thatD∗ is the set of pairs(A,0) or (0,A),
A ∈ I (R), such that 0/∈ A. The setD∗ is often mentioned below, since we are able to divide by its
elements. Occasionally we shall also make use of the larger setD \ T ∗ of elements, possibly having
one of their “endpoints” equal to zero (that is, pairs(A,0) or (0,A), such thatA may have zero as an
endpoint).

Algebraic properties and computational rules.The systems(D,+) and(D∗,∗) are groups according
to the definition of “+”, respectively “∗”, by the above mentioned extension method; hence these systems
possess inverse additive and multiplicative operators. Denote by−Da the opposite (additive inverse) of
a ∈D and by 1/D a the inverse ofa ∈D∗ with respect to “∗”. Hence, fora, b ∈D the unique solution to
the equationa + x = b is x = b+ (−Da)= b−D a. Similarly, for a ∈D∗, b ∈D the unique solution to
the equationa ∗ y = b is y = b ∗ (1/D a)= b /D a. Of course,a −D a = 0 anda /D a = 1.

Interval multiplication by scalar is special case of interval multiplication when one of the multipliers
in a ∗ b is degenerate (that is, real number). Multiplication by−1 is callednegationand is denoted
−a = (−1)∗a; we writea−b= a+ (−b). Interval multiplication by scalar obeys the rules:α∗ (β ∗u)=
(αβ) ∗ u andα ∗ (u+ v)= α ∗ u+ α ∗ v for α,β ∈ R, u, v ∈D. The rule(α + β) ∗ u= α ∗ u+ β ∗ u
does not generally hold (see below).

Dualization(dual interval), denoteda−, is defined as composition of negation and opposite bya− =
−(−D(a)). We have−D(−a) = −(−Da) = a−. Reciprocal elementis defined inD∗ as 1/a = 1/D a−,
we have 1/D (1/a) = 1/(1/D a) = a−, for a ∈D∗. The inverse operators with respect to multiplication
can be written as 1/D a = 1/a−. The inverse elements−Da, 1/D a generate theinverse operations
a −D b = a + (−Db)= a + (−b−)= a − b−, a /D b= a ∗ (1/D b)= a ∗ (1/b−)= a/b−. Fora, b ∈D,
c ∈ D∗ the (unique) solutions of the equationsa + x = b, c ∗ y = b, a + c ∗ z = b are respectively
x = b+ (−a−)= b− a−, y = b ∗ (1/c−)= b/c−, z= (b− a−)/c−.
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Denotinga+ = a, we haveaλ ∈ {a, a−} for λ ∈ Λ = {+,−}. A “product” of two binary variables
µν, µ,ν ∈ Λ, is defined by++ = −− = +, and+− = −+ = −. Using this product we may write
(aλ)δ = aλδ , in particular,(aλ)λ = a. Note that the equationsa = b andaλ = bλ are equivalent; and such
areaλ = b anda = bλ. The equationsa = b anda − b− = 0 are equivalent, alsoa = b anda/b− = 1 for
b ∈D∗. We also have(a + b)λ = aλ + bλ, (a ∗ b)λ = aλ ∗ bλ, aλ − a−λ = 0, etc.

Define the “sign”σ :D \ T ∗ →Λ of a directed intervala = (A,0), respectively,a = (0,A), such that
0 /∈A, by

σ(a)=
{+, if A− > 0,A+ > 0,

−, if A− < 0,A+ 6 0.

Theconditionally distributive(q-distributive) law states [1,7,13]: Fora, b, c, a + b ∈D \ T ∗ we have

(a + b) ∗ cσ(a+b) = a ∗ cσ(a)+ b ∗ cσ(b), (3)

which can be also written(a + b) ∗ c= a ∗ cσ(a)σ (a+b)+ b ∗ cσ(b)σ (a+b).
In particular, for allα,β ∈R, c ∈D, we have

(α+ β) ∗ cσ(α+β) = α ∗ cσ(α)+ β ∗ cσ(β). (4)

Relation (4) shows that the algebraic system(D,+,R,∗) is not a linear space; this space, called q-
linear, has been studied in [8,10]. From (4) it can be noticed that the q-linear space involves a linear
multiplicationα · c= α ∗ cσ(α), satisfying(α+ β) · c = α · c+ β · c.

The following distributivity relation may be also useful. Ifd ∈ T ∗, thend can be splitted into two
intervalsa, b having the same type asd and satisfying the relationsa, b ∈ T , d = a + b (in fact, botha
andb have each one endpoint equal to zero). Then, forc ∈D∗ we have

d ∗ c= (a + b) ∗ c= a ∗ c+ b ∗ c. (5)

The intervala ∈ D is calledsymmetricif a = −a. Denote the set of all symmetric intervals byDS. If
a ∈DS, thena− ∈DS as well. It is easy to see that ifa is symmetric, thenγ ∗ a = |γ | ∗ a for γ ∈R. The
subsetsR andDS form a basis ofD in the following sense. If we fix two intervalse ∈R, s ∈DS, e 6= 0,
s 6= 0, then everya ∈D can be uniquely presented by means of a pair of real numbers(a′, a′′), a′, a′′ ∈R,
such thata = a′ ∗ e+ a′′ ∗ sσ(a′′) = a′ ∗ e+ |a′′| ∗ sσ(a′′). We shall further fixe= 1, s = j = [−1,1] (note
that j satisfiesj ∗ j = j ). Thus we havea = a′ + |a′′| ∗ jσ(a′′), which will be symbolically denoted
by a = (a′, a′′) and calledcenter-radiusform. It is easy to see that in center-radius form addition is
(a′, a′′)+ (b′, b′′)= (a′ + b′, a′′ + b′′), and interval multiplication by scalar isα ∗ (b′, b′′)= (αb′, |α|b′′).
Dualization is(a′, a′′)− = (a′,−a′′), more generally we can write(a′, a′′)λ = (a′, λa′′). More relations
for the center-radius form are given in Appendix A.

Inclusion, norm, metric. The systems(D,+,⊂) and (D∗,∗,⊂) are isotone groups [4]. Norm inD
is introduced in the usual way:‖x‖ is a norm inD, if: (i) ‖x‖ > 0 and‖x‖ = 0 if and only if x = 0;
(ii) ‖x + y‖6 ‖x‖+‖y‖; and (iii) ‖k ∗ x‖6 |k|‖x‖ for k ∈R. Forx ∈D, ‖x‖ = inf t{t ∗ j− ⊂ x ⊂ t ∗ j}
is a norm [4]. Some useful properties of the norm inD are:‖x ∗y‖6 ‖x‖‖y‖, ‖x−‖ = ‖x‖. Other norms
are given in Appendix A. The norm inD induces a metricr(x, y) by means ofr(x, y) = ‖x −D y‖ =
‖x − y−‖ for x, y ∈D.
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3. Interval matrix algebra

Denote byDn the set of alln-dimensional vectorsx = (x1, . . . , xn) with componentsxi ∈ D,
i = 1, . . . , n, and byDl×k the set of all(l×k)-dimensional matricesA= {aij }n=1,...,k

i=1,...,l = (ail)with ail ∈D.
Operations between vectors and matrices of directed intervals, further calledinterval vectors, respectively
interval matrices, are defined similarly to matrix operations involving numbers. Addition and subtraction
are defined component-wise for interval vectors (matrices) of identical size. An interval vector with all
components degenerate is called degenerate.

Dot (inner) product of two interval vectorsx = (x1, . . . , xn) ∈Dn, y = (y1, . . . , yn) ∈Dn, is defined by
〈x,y〉 =∑n

i=1xi ∗ yi ; in particular, ifx = ξ ∈Rn we have〈ξ,y〉 =∑n
i=1 ξi ∗ yi . If A= (aij ) ∈Dm×l and

B = (bij ) ∈Dl×n, then the product of the interval matricesA andB is the matrixC =A ∗B = (cij ) ∈
Dm×n with cij =∑l

k=1 aik ∗ bkj . This defines the expressionA ∗ x in (1) as a product of two interval
matrices: namely,A, x are considered as interval matrices of ordern× n, n× 1, respectively, and the
resultA∗x is an interval(n×1)-matrix. LetA ∈Rn×n be a real-valued (point) matrix and letu,v ∈Dn.
Using that the matrixA is real-valued we obtain the ruleA ∗ (u+ v)=A ∗ u+A ∗ v.

The norm‖x‖ inD is extended for vectors and matrices in the usual way. For instance, forA= (aik) ∈
Dn×n, we may define a matrix norm by

‖A‖ =max
i

{
n∑
k=1

‖aik‖
}
.

Other norms are given in Appendix A. For the product of two interval matrices we have‖A ∗ B‖ 6
‖A‖‖B‖. A metric inDn is defined by‖x −D y‖ = ‖x − y−‖ for x,y ∈ Dn. It has been proved in
[4] that for a,b, c ∈Dn, we have‖c ∗ a −D c ∗ b‖6 ‖c‖‖a −D b‖. This relation can be generalized as
follows:

Proposition 1. Leta,b ∈Dn, C ∈Dn×n. Then we have

‖C ∗ a −D C ∗ b‖6 ‖C‖‖a −D b‖.

Proposition 2. Let U :D1→ D1, D1 ⊆ Dn, be a contraction mapping in the sense that there exists
q ∈R, 0< q < 1, such that‖U(x)−D U(y)‖ 6 q‖x −D y‖, for all x,y ∈D1. ThenU has a fixed-point
x∗ ∈D1, which is the limit of the sequencex(l+1) =U(x(l)), l = 0,1, . . . , for anyx(0) ∈D1.

The proof follows the classical proof using properties of “−D” such asa −D a = 0 and(a −D b)+
(b−D c)= a −D c. Proposition 2 is a generalization of a fixed-point theorem from [6].

We shall consider vectors and matrices consisting of signs fromΛ = {+,−}. The set of all
n-dimensional vectors of signsλ = (λ1, . . . , λn) with λi ∈ Λ is denoted byΛn and the set of all
(n × n)-dimensional matrices of signs is denoted byΛn×n. Matrices (vectors) of signs of same size
are “multiplied” component-wise using the rules++ = −− = +, +− = −+ = −. For instance, for
λ= (+,−,+,−),µ= (−,+,−,+), we haveλµ= (−,−,−,−).

Similarly, the “product” of a matrix (vector) of signs by an interval matrix (vector) of the same size is
defined, e.g., forλ= (+,−,+,−) ∈Λ4, x = (x1, x2, x3, x4) ∈D4, we haveλx = (x1,−x2, x3,−x4). We
extend further this rule for dualization as follows. Letλ= (λ1, . . . , λn) ∈Λn andx = (x1, . . . , xn) ∈Dn.
The vector((x1)λ1, . . . , (xn)λn) will be symbolically denoted byxλ. For instance, forλ= (+,−,+,−) ∈
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Λ4, x = (x1, x2, x3, x4) ∈ D4, we havexλ = (x1, (x2)−, x3, (x4)−). Under this convention the rules for
dualization are generalized for matrices and vectors, i.e., we have thatxλ = v is equivalent tox = vλ,
(xλ)µ = xλµ, etc. According to the above we shall further assume that “products” of the formΓ∆ and
ΓA,Γ ,∆ ∈Λn×n,A ∈Dn×n, are well defined.

If a = (a1, . . . , an) ∈ (D∗)n, denoteσ(a)= (σ (a1), . . . , σ (an)) and, ifA ∈ (D∗)n×n, denoteσ(A) =
(σ (aik)). For x = (x1, . . . , xn) ∈Dn we havexσ(a) = ((x1)σ(a1), . . . , (xn)σ(an)). Using such notation we
can write〈b,xσ(a)〉 =∑n

i=1 bi ∗ (xi)σ(ai), and, in particular,〈a,xσ(a)〉 =∑n
i=1 ai ∗ (xi)σ(ai).

We may further extend the above notation for a product of the formA ∗ xσ(B), whereA,B ∈ (D∗)n×n,
x ∈Dn. To this end consider the matrixA as a system of vectors, that isA= (aij )= {ai}ni=1 ∈ (D∗)n×n,
whereai = (ai1, . . . , ain) ∈ (D∗)n. We then have

A ∗ xσ(B) = {〈ai ,xσ(bi )〉}ni=1=
{

n∑
k=1

aik ∗ (xk)σ(bik)
}n
i=1

.

Using these notations we generalize (3) as follows:

Proposition 3. LetA,B ∈ (D∗)n×n are such thatA+B ∈ (D∗)n×n and letc ∈ (D∗)n. Then we have

(A+B) ∗ cσ(A+B) =A ∗ cσ(A) +B ∗ cσ(B). (6)

Relation (6) can be also written in the form

(A+B) ∗ c=A ∗ cσ(A)σ (A+B)+B ∗ cσ(B)σ (A+B). (7)

Proposition 4. LetC ∈ (D∗)n×n and leta,b ∈ (D∗)n are such thata+ b ∈ (D∗)n. Then we have

Cσ(a+b) ∗ (a + b)=Cσ(a) ∗ a+Cσ(b) ∗ b. (8)

Relation (8) can be written in the form

C ∗ (a + b)=Cσ(a)σ (a+b) ∗ a+Cσ(b)σ (a+b) ∗ b. (9)

Note that relations (6) and (7) are valid in particular for anyA,B ∈ R(n×n) and similarly, (8) and, (9)
hold true for anyC ∈Dn×n anda,b ∈Rn.

4. An iterative interval method

Given an interval matrixA ∈Dn×n denoteT = T (A)= (tij ) with tii = aii , tij = 0, i 6= j . Assuming
aii ∈D∗, i = 1, . . . , n, denoteT −1= T −1(A)= (t∗ij ), t∗ij = 1/(aii)−, t∗ij = 0, i 6= j . Clearly,T −1 ∗T = 1.

Consider the following interval-valued analogue of the Jacobi iteration procedure:

x := T −1 ∗ (b−D (A−D T ) ∗ x). (10)

In (10),A−D T =A−T − is the matrixA with diagonal elements replaced by zero. Using distributivity
relations (3) and (5)–(9), it is easy to see that both systems of equations (1) and (10) are algebraically
equivalent.

Proposition 5. Let the matrixA ∈Dn×n satisfyaii ∈D∗, i = 1, . . . , n, together with‖T −1‖ ‖A−DT ‖6
q < 1. Then(1) has a unique solutionxs ∈Dn and method (10) converges toxs for anyb ∈Dn and any
initial approximationx(0) ∈Dn.
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Proof. Forx ∈Dn denoteB(x)= T −1 ∗ (b−D (A−D T ) ∗ x). Forx,y ∈Dn we have∥∥B(x)−D B(y)∥∥= ∥∥T −1 ∗ (b−D (A−D T ) ∗ x)−D T −1 ∗ (b−D (A−D T ) ∗ y)∥∥
6
∥∥T −1∥∥∥∥(b−D (A−D T ) ∗ x)−D (b−D (A−D T ) ∗ y)∥∥
= ∥∥T −1∥∥∥∥(A−D T ) ∗ y −D (A−D T ) ∗ x∥∥
6 ‖T −1∥∥‖A−D T ‖‖y −D x‖< q‖y −D x‖,

using Proposition 1. The inequality‖B(x) −D B(y)‖ 6 q‖y −D x‖ shows thatB is a contraction
mapping. This combined with Proposition 2 and the fact that (1) and (10) are algebraically equivalent
proves the theorem.2

In [19] the following iteration method for the solution to (1) withb ∈Dn has been proposed:

xi :=
(
bi −D

n∑
j=1,j 6=i

aij ∗ xj
)/

(aii)−, i = 1, . . . , n. (11)

Obviously, (11) is a component-wise form of the matrix expression (10). Kupriyanova proves
convergence of the iterative process (11) to the solution of problem (1) under special (implicit) restrictions
on the input dataA,b and on the initial approximation [5]. Proposition 5 requires explicit restrictions on
the matrix and no restrictions on the initial approximations.

Remark. If in Proposition 5 both inequalities‖T (A)−1‖ 6 q < 1, and‖A −D D(A)‖ 6 q < 1 are
assumed, then we obtain‖B(x)−D B(y)‖< q2 ‖y −D x‖, showing better convergence.

Our iteration method can be also applied (with some modifications) to the more general problem

A ∗ xΓ +B ∗ x∆ = c, (12)

whereA,B ∈ Dn×n, Γ ,∆ ∈ Λn×n and c ∈ Dn. We note that (12) is not the most general form of
systems of equations of the type (1) (cf. [13]). However, in the case of real-valued (point) matrix
coefficients problem (12) presents the general situation. The important special case of point matrices will
be considered in the next section. We shall end this section by considering (12) in the one-dimensional
case. Then we obtain a single equation of the form

a ∗ y + b ∗ yλ = v, λ ∈Λ= {+,−}, (13)

with respect toy. From (3) we see that in the caseσ(a)σ (b) = λ the expressiona ∗ y + b ∗ yλ is
algebraically equivalent toy ∗ (a + b)σ(a)σ (a+b) and therefore the solutiony of a ∗ y + b ∗ yλ = v is
y = (v/(a + b)−)σ(a)σ (a+b). A presentation of the expressiona ∗ y + b ∗ yλ in the form y ∗ c is not
possible in the caseσ(a)σ (b)=−λ. The next proposition shows that (13) has a unique solution in the
general case when no constraintσ(a)σ (b)= λ is assumed.

Proposition 6. Given area, b, v ∈D \ T ∗, λ ∈Λ = {+,−}. Assume thats′ = aσ(a) ∗ aλσ(b) − b−σ(b) ∗
b−λσ(a) ∈D∗. Eq.(13) has the unique solution

y =
(
aλδσ(b) ∗ v

s
− b−δσ (a) ∗

(
v

s

)
−λ

)
σ(s ′)

, s = s′−δσ (s), δ = σ(v)σ (y). (14)
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To determine the signσ(y) in (14) consider the following two cases:
(i) σ(a) = σ(b). In this case it can be easily seen from(13) that σ(y) = σ(v)σ (a), henceσ(a) =

σ(b)= σ(v)σ (y)= δ. The solution(14) obtains the form

y =
(
aλ ∗ v

s
− b− ∗

(
v

s

)
−λ

)
σ(s)

, s = (a ∗ aλ − b− ∗ b−λ)−σ(s).

(ii) σ(a)=−σ(b). Then from(14)we see thatσ(y)= σ(v)σ (s)σ (a) and the expression fory obtains
the form

y = a−λ ∗
(
v

s

)
σ(s)

− b− ∗
(
v

s

)
−λσ(s)

, s = a− ∗ aλ − b− ∗ bλ.

5. Special case: Point matrix, interval right-hand side

In the special case of point matrix and interval right-hand side we are able to find simple conditions
for the existence and uniqueness of the solution and to reduce the problem to the familiar numerical case.
We shall make use of the following definition (cf. [17]):

Definition. LetA= {ai,k} ∈Rn×n be a real-valued (point) matrix. We say that the matrixA is completely
nonsingular, if both matricesA and|A| = {|ai,k|} are nonsingular.

In the next proposition we make use of the center-radius presentation of an interval vector writing
the components ofb = {bi} ∈ Dn in the form bi = (b′i , b′′i ) ∈ D. Denote the vector of the centers by
b′ = {b′i}ni=1 ∈Rn and the vector of the radii byb′′ = {b′′i }ni=1 ∈Rn, so thatb= (b′,b′′) ∈Dn.

Proposition 7. LetA= (αi,k) ∈ Rn×n be completely nonsingular andb = (b′,b′′)= {(b′i , b′′i )}ni=1 ∈Dn

be a given interval vector. Then(1) has a unique solutionx = (x ′,x ′′)= {(x′i , x′′i )}, such thatx ′ = {x′i} ∈
Rn is the solution of the linear systemAx ′ = b′, andx ′′ = {x′′i } ∈Rn is the solution of the linear system
|A|x ′′ = b′′.

Proof. System (1) in component-wise form is

α11∗ x1+ α12∗ x2+ · · · + α1n ∗ xn = b1,

... (15)

αn1 ∗ x1+ αn2 ∗ x2+ · · · + αnn ∗ xn = bn,
whereαij ∈R, bi ∈D, i = 1, . . . , n. Substituting in (15) the center-radius presentations for the involved
intervalsxi = (x′i , x′′i ), bi = (b′i , b′′i ) ∈D, we reduce system (1) to two (real-valued) linear systems for the
coordinates of the unknowns. The centersx′i ∈Rn satisfy the linear system

α11 · x′1+ α12 · x′2+ · · · + α1n · x′n = b′1,
... (16)

αn1 · x′1+ αn2 · x′2+ · · · + αnn · x′n = b′n,
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and the radiix′′i ∈R satisfy

|α11| · x′′1 + |α12| · x′′2 + · · · + |α1n| · x′′n = b′′1,
... (17)

|αn1| · x′′1 + |αn2| · x′′2 + · · · + |αnn| · x′′n = b′′n.
Using thatA is completely nonsingular, observe that (16) and (17) have unique solutions, hence the
proposition follows. 2

Note that using center-radius form we are able to prove Proposition 7 by splitting the original problem
into two numerical problems of thesamesize (n×n) for the numerical components of the intervals (using
center-radius form). The use of endpoint presentation of intervals generally leads to numerical problems
of double size (2n× 2n) (cf., e.g., [17]).

Our technique can be applied for the general problem (12):A ∗ xΓ + B ∗ x∆ = c, involving real
matricesA,B ∈Rn×n, and arbitrary sign matricesΓ ,∆ ∈Λn×n.

The following proposition states that problem (12) splits into two numerical linear problems(A +
B)x′ = c′, (Γ |A| +∆|B|)x ′′ = c′′.
Proposition 8. Let Γ ,∆ ∈Λn×n, c ∈Dn, and letA,B ∈ Rn×n are such thatA+B andΓ |A| +∆|B|
are nonsingular. Then(12) has a unique solutionx = (x ′,x′′), wherex′ is solution of the linear system
(A+B)x′ = c′, andx′′ is solution of the linear system(Γ |A| +∆|B|)x′′ = c′′.
Corollary. Let λ ∈ {+,−}, c ∈ Dn, and letA,B ∈ Rn×n are such that both matricesA + B and
|A| + λ|B| are nonsingular. EquationA ∗ x + B ∗ xλ = c has a unique solutionx = (x ′,x′′), where
x ′ is the solution of the linear system(A + B)x ′ = c′, and x ′′ is the solution of the linear system
(|A| + λ|B|)x ′′ = c′′.

To demonstrate the technique for equivalent algebraic transformation of directed interval expressions
we prove below the special case when the dimension of the system is one, that is the problem (12) consists
of one equation only. This case can be considered as a special case of Proposition 6 with degenerate
coefficients.

Proposition 9. Letp,q ∈R, λ ∈ {+,−}, d ∈D, s = p2− q2 6= 0. Then equation

p ∗ x + q ∗ xλ = d (18)

has a unique solution

x = s−1 ∗ (p ∗ d − q ∗ d−λ)σ(s). (19)

Proof. Denoteσ = σ(s) and substitute (19) into (18):

p ∗ x + q ∗ xλ = (ps−1) ∗ (p ∗ d − q ∗ d−λ)σ + (qs−1) ∗ (p ∗ d − q ∗ d−λ)λσ
= (p2s−1) ∗ dσ + (−pqs−1) ∗ d−λσ + (qps−1) ∗ dλσ + (−q2s−1) ∗ d−σ
= (p2s−1) ∗ dσ + (−q2s−1) ∗ d−σ = s−1 ∗ (p2 ∗ d + (−q2) ∗ d−)σ
= s−1 ∗ ((p2− q2) ∗ dσ )σ = (s−1(p2− q2)) ∗ d,
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where for the equivalent transformation in the last line we use the distributive relation (4). The last
quantity is obviously equal tod, which proves that (19) is a solution to (18). Noticing that all above
algebraic tranformations are equivalent, we see that (19) is the unique solution to (18).2

The next proposition shows that in certain special cases we can write the solution to problem (1) with
point matrixA in the form of an interval Cramer-type formula.

Proposition 10. LetA= (ai,k) ∈ Rn×n be a real matrix and let the numbersai,k∆i,k , where∆i,k is the
subdeterminant ofai,k , have constant signs for alli, k = 1,2, . . . , n. Then for the solution toA ∗ x = b
the following Cramer-type formula holds:

(xi)σ (∆)= 1

∆

n∑
i=1

(−1)i+k∆ik(bi )λi,k
Def= 1

∆

∣∣∣∣∣∣∣
a11 . . . b1 . . . a1n
...

...
...

a1n . . . bn . . . ann

∣∣∣∣∣∣∣ ,
whereλi,k = (−)i+k = {+, i + k even;−, i + k odd}.

The proof is easily obtained using the properties of directed intervals. A class of matrices satisfying
the conditions of Proposition 10 is the class of Vandermonde matrices, appearing in interpolation theory.

6. Numerical algorithm and experiments

The following simple numerical procedure for the solution of (step 1 is based on Proposition 6).
1. Check the condition‖T −1‖‖A−D T ‖< 1.
2. Using a random initial approximationx(0) iterate according to

x(k+1) := T −1 ∗ (b−D (A−D T ) ∗ x(k)), k = 0,1, . . . . (20)

Using the inclusion properties of the interval arithmetic operations (see, e.g., [4]) it is possible to
construct a modification of the above interval algorithm, using suitable computer-arithmetic operations
and delivering the result with automatic verification. Such verified algorithm was implemented and
tested using an experimental package for directed interval arithmetic [14]. A discussion on the software
implementation is given in [11]. For the numerical applications we need component-wise and/or center-
radius presentations of the interval operations. A brief summary of these presentations is given in
Appendix A.

The following examples are solved by means of the package announced in [11]. All results are obtained
in several iterations using random initial approximations.

Example 1. Consider the system [3] [0.7,1.3] [−0.3,0.3] [−0.3,0.3]
[−0.3,0.3] [0.7,1.3] [−0.3,0.3]
[−0.3,0.3] [−0.3,0.3] [0.7,1.3]

 ∗ x =
 [−14,7]
[9,12]
[3,3]

 .
The algebraic solution obtained by the iteration method (10) using random initial approximation is
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x =
 [−9.125,−13.0536]
[16.7679,7.125]
[11.25,−2.67857]

 .
Example 2. Consider the system [12] [3.7,4.3] [−1.5,−0.5] [0,0]

[−1.5,−0.5] [3.7,4.3] [−1.5,−0.5]
[0,0] [−1.5,−0.5] [3.7,4.3]

 ∗ x =
 [−14,14]
[−9,9]
[−3,3]

 .
The solution obtained by the iteration method (10) using random initial approximation is

x =
 [−2.92668,2.92668]
[−0.943531,0.943531]
[−0.368536,0.368536]

 .
Changing in the above problem only the vectorb, here are some results:

b=
 [−14,0]
[−9,0]
[−3,0]

 ; x =
 [−3.46158,−0.936849]
[−2.3109,−1.7696]
[−0.903442,−0.936889]

 .
b=

 [0,14]
[0,9]
[0,3]

 ; x =
 [0.936849,3.46158]
[1.7696,2.3109]
[0.936889,0.903442]

 .
b=

 [2,14]
[−9,−3]
[−3,1]

 ; x =
 [0.392969,2.86724]
[−1.11391,−1.09203]
[−0.824654,−0.181313]

 .
b=

 [2,14]
[3,9]
[−3,1]

 ; x =
 [1.46332,3.54147]
[2.45663,2.2762]
[0.111972,0.518212]

 .
Example 3. This is an example from [3]:( [2,3] [0,1]

[1,2] [2,3]
)
∗ x =

( [0,120]
[60,240]

)
; x =

( [0,17.1429]
[30,68.5714]

)
.

7. Conclusion

We formulate explicit conditions on the matrix in (1) and prove that under these conditions the interval
Jacobi-type method (11) converges to the solution to (1) with anarbitrary initial approximation and
arbitrary right-hand side. The presented techniques may be used to formulate and prove convergence of
other iteration methods, which are interval analogues of familiar iteration methods for the numeric case.
From our results we conclude that algebraic transformations based on directed interval arithmetic can
be successfully used for the formulation of iterative procedures for the solution of the interval algebraic
problem (1), respectively for the analysis of the solution (e.g., with respect to its convergence). Thereby
directed interval arithmetic can be used in a way much similar to using real arithmetic.

Directed interval arithmetic is the natural arithmetic for the solution of algebraic equations with
interval coefficients, since it is obtained from the arithmetic for normal intervals via algebraic completion.
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Solving interval algebraic equations using only proper intervals can be compared to solving real
linear algebraic equations when restricting ourselves only to positive integer numbers (Diophantine
equations). Indeed, in both cases we stay within semigroup systems and make no use of inverse
additive/multiplicative operations.
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Appendix A

Below we give some formulae and expressions for the numerical component-wise presentations of
intervals, using the endpoint and center-radius presentation proposed in [4].

A.1. End-point form

The set of directed intervalsD is equivalent to the set of all ordered pairs of real numbers{[α,β] |
α,β ∈ R} [4]. The first component (endpoint) ofa ∈ D is further denoted bya−, and the second by
a+, so thata = [a−, a+]. Thusaλ ∈ R with λ ∈ Λ = {+,−} is the first or the second component of
a ∈ D depending on the value ofλ. The directed intervala = [a−, a+] is proper (normal) if a− 6 a+,
degenerateif a− = a+, andimproper if a− > a+. The set of all proper intervals is equivalent toI (R),
the set of degenerate intervals is equivalent toR, and the set of improper intervals isI (R). We have
D = I (R)∪ I (R).

To every directed intervala = [a−, a+] ∈D corresponds a binary variabletypeor direction, defined
by

τ(a)=
{+, if a− 6 a+,
−, if a− > a+.

We have

Z = {a ∈ I (R) | a+ 6 06 a−
}
, Z

∗ = {a ∈ I (R) | a+ < 0< a−
}
,

T =Z ∪Z, T ∗ =Z∗ ∪Z∗,D∗ =D \ T .
Thesignof a directed intervalσ :D \ T ∗ →Λ can be expressed by

σ(a)=
{+, if a−, a+ > 0,

−, if a− < 0, a+ 6 0.

Addition “+” in D can be expressed endpoint-wise as
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a + b= [a− + b−, a+ + b+], a, b ∈D.
An endpoint-wise presentation of multiplication “∗” in D is given by

a ∗ b=

[
a−σ(b)b−σ(a), aσ(b)bσ(a)

]
, a, b ∈D \ T ∗,[

aδτ(b)b−δ, aδτ(b)bδ
]
, δ = σ(a), a ∈D \ T ∗, b ∈ T ∗,[

a−δbδτ(a), aδbδτ(a)
]
, δ = σ(b), a ∈ T ∗, b ∈D \ T ∗,

(A.1)

a ∗ b=


[
min

{
a−b+, a+b−

}
, max

{
a−b−, a+b+

}]
, a, b ∈Z∗,[

max
{
a−b−, a+b+

}
, min

{
a−b+, a+b−

}]
, a, b ∈Z∗,

0,
(
a ∈ Z∗, b ∈Z∗)∨ (a ∈Z∗, b ∈Z∗).(A.2)

If one of the multipliers in (A.1) is degenerate, than for any[a, a] = a ∈ R, b ∈ D we obtain
a ∗ b = [ab−σ(a), abσ(a)]. This implies that the casea ∈ D \ T ∗, b ∈ T ∗ in (A.1) can be written as
a ∗ b= aσ(a)τ(b) ∗ b.

Negationis expressed by−b = (−1) ∗ b = [−b+,−b−]. The composite operationa + (−1) ∗ b =
a + (−b)= a − b = [a− − b+, a+ − b−] is subtraction.

The inverse is presented component-wise as−Da = [−a−,−a+], for a ∈ D, and 1/D a =
[1/a−,1/a+], for a ∈ D∗. We have component-wise for the dualization:[a−, a+]− = [a+, a−], and
for the reciprocal: 1/[a−, a+] = [1/a+,1/a−], a ∈D∗; also[a−, a+]λ = [a−λ, aλ].

Inclusion inD isA⊂ B if and only if a− > b− anda+ 6 b+.
If x ∈D we have

‖x‖ = inf t {t ∗ j− ⊂ x ⊂ t ∗ j} =max
{∣∣x−∣∣, ∣∣x+∣∣}.

Other norms are‖x‖2= |x−| + |x+| and‖x‖3 = (|x−|2+ |x+|2)1/2. The induced metric inD is

r(x, y)= ‖x −D y‖ =max
{∣∣x− − y−∣∣, ∣∣x+ − y+∣∣},

‖x −D y‖2=
∣∣x− − y−∣∣+ ∣∣x+ − y+∣∣,

‖x −D y‖3= (∣∣x− − y−∣∣2+ ∣∣x+ − y+∣∣2)1/2.
If (c1, . . . , cn) ∈Dn we have∥∥(c1, . . . , cn)

∥∥=max
i

{‖ci‖}ni=1=max
i

{∣∣c−i ∣∣, ∣∣c+i ∣∣}ni=1.

For the other two norms we have∥∥(c1, . . . , cn)
∥∥

2=
n∑
i=1

‖ci‖2=
n∑
i=1

(∣∣c−i ∣∣+ ∣∣c+i ∣∣);
‖(c1, . . . , cn

)∥∥
3=

(
n∑
i=1

‖ci‖23
)1/2

=
(

n∑
i=1

(∣∣c−i ∣∣2+ ∣∣c+i ∣∣2)
)1/2

.

A.2. Center-radius form

Denote the center ofa by a′ and the radius bya′′. Both a′, a′′ are elements ofR; the radius of
an improper intervals is negative and we haveτ(a) = σ(a′′). An interval in center-radius form is
denoted by(a′, a′′). The transition formulae between both forms (endpoint and center-radius) are:
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(i) a′ = 1
2(a
− + a+), a′′ = 1

2(a
+ − a−), and (ii) a+ = a′ + a′′, a− = a′ − a′′. In center-radius form

addition has the form(
a′, a′′

)+ (b′, b′′)= (a′ + b′, a′′ + b′′), a, b ∈D.
Interval multiplication is given by

(
a′, a′′

) ∗ (b′, b′′)=

(
a′b′ + σ(b)σ (a)a′′b′′, |b′|a′′ + |a′|b′′), if a, b ∈D \ T ,(
a′b′ + σ(b)τ(a)a′b′′, |b′|a′′ + |a′′|b′′), if condition C,

0, if a, b ∈ T , τ (a)=−τ(b),
(A.3)

Condition C in (A.3) is: either (C1)a ∈ T , b ∈ D \ T , or (C2) a, b ∈ T , τ(a) = τ(b), χ(a) 6 χ(b),
whereχ is defined fora 6= 0 by

χ(a)= a−δ/aδ = (a′ + δa′′)/(a′ − δa′′), δ = τ(a)σ (a).
The interval multiplication by scalar is a special case of (A.3):

α ∗ (b′, b′′)= (αb′, |α|b′′), α ∈R, b ∈D. (A.4)

Below we summarize the presentations of the operators opposite, negation, dualization, reciprocal and
inverse, both in endpoint and center-radius form:

−D[a−, a+]= [−a−,−a+], −D(a′, a′′)= (−a′,−a′′),
−[a−, a+]= [−a+,−a−], −(a′, a′′)= (−a′, a′′),[
a−, a+

]
− =

[
a+, a−

]
,

(
a′, a′′

)
− =

(
a′,−a′′),

1
/[
a−, a+

]= [1/a+,1/a−], 1
/(
a′, a′′

)= (a′/∆(a), a′′/∆(a)),
1
/
D

[
a−, a+

]= [1/a−,1/a+], 1
/(
a′, a′′

)= (a′/∆(a),−a′′/∆(a)),
where∆(a)= (a′)2− (a′′)2= a−a+.

Inclusion can be expressed in center-radius presentation bya ⊂ b if and only if |b′ − a′| 6 b′′ − a′′.
Note that the latter condition splits to two simultaneous restrictionsb′′ − a′′ = γ > 0 and|b′ − a′|6 γ .

Norm, metric. The following functionals are norms inD:

‖c‖(r) =max
{∣∣c′∣∣, ∣∣c′′∣∣}; ‖c‖(r)2 =

∣∣c′∣∣+ ∣∣c′′∣∣; ‖c‖(r)3 =
(∣∣c′∣∣2+ ∣∣c′′∣∣2)1/2.

In Dn we may take respectively∥∥(c1, . . . , cn)
∥∥(r) =max

i

{‖ci‖(r)}=max
i

{∣∣c′i ∣∣, ∣∣c′′i ∣∣};∥∥(c1, . . . , cn)
∥∥(r)

2 =
n∑
i=1

‖ci‖(r)2 =
n∑
i=1

(∣∣c′i ∣∣+ ∣∣c′′i ∣∣);
∥∥(c1, . . . , cn)

∥∥(r)
3 =

(
n∑
i=1

(‖ci‖(r)3

)2)1/2

=
(

n∑
i=1

(∣∣c′i ∣∣2+ ∣∣c′′i ∣∣2)
)1/2

.
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